منابع مشابه
Structure and function in the budding yeast nucleus.
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament mesh...
متن کاملThe budding yeast endocytic pathway.
Recent live-cell imaging studies, coupled with powerful genetic, biochemical and pharmacological tests of function, have expanded our understanding of the molecular events that underlie clathrin/actin mediated-endocytosis in budding yeast. Many features of this pathway are evolutionarily conserved (Engqvist-Goldstein and Drubin, 2003; Kaksonen et al, 2006). Therefore, insights into the intricat...
متن کاملThe Positioning and Dynamics of Origins of Replication in the Budding Yeast Nucleus
We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)-tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 pha...
متن کاملRNAi in budding yeast.
RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering ...
متن کاملAn array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence
The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drasticall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cold Spring Harbor Perspectives in Biology
سال: 2010
ISSN: 1943-0264
DOI: 10.1101/cshperspect.a000612